Extended stochastic gradient identification algorithms for Hammerstein–Wiener ARMAX systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems

An extended stochastic gradient algorithm is developed to estimate the parameters of Hammerstein–Wiener ARMAX models. The basic idea is to replace the unmeasurable noise terms in the information vector of the pseudo-linear regression identification model with the corresponding noise estimates which are computed by the obtained parameter estimates. The obtained parameter estimates of the identif...

متن کامل

On Stochastic Proximal Gradient Algorithms

We study a perturbed version of the proximal gradient algorithm for which the gradient is not known in closed form and should be approximated. We address the convergence and derive a non-asymptotic bound on the convergence rate for the perturbed proximal gradient, a perturbed averaged version of the proximal gradient algorithm and a perturbed version of the fast iterative shrinkagethresholding ...

متن کامل

On The Identification and Estimation of Partially Nonstationary ARMAX Systems

This paper extends current theory on the identification and estimation of vector time series models to nonstationary processes. It examines the structure of dynamic simultaneous equations systems or ARMAX processes that start from a given set of initial conditions and evolve over a given, possibly infinite, future time horizon. The analysis proceeds by deriving the echelon canonical form for su...

متن کامل

Convergence Analysis of Gradient Descent Stochastic Algorithms

This paper proves convergence of a sample-path based stochastic gradient-descent algorithm for optimizing expected-value performance measures in discrete event systems. The algorithm uses increasing precision at successive iterations, and it moves against the direction of a generalized gradient of the computed sample performance function. Two convergence results are established: one, for the ca...

متن کامل

A Variational Analysis of Stochastic Gradient Algorithms

Stochastic Gradient Descent (SGD) is an important algorithm in machine learning. With constant learning rates, it is a stochastic process that, after an initial phase of convergence, generates samples from a stationary distribution. We show that SGD with constant rates can be effectively used as an approximate posterior inference algorithm for probabilistic modeling. Specifically, we show how t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2008

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2008.07.015